CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum.
نویسندگان
چکیده
Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2 This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO2 to formate serves as a CO2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO2 via two biochemical reactions: the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO2 uptake, and provided physical evidence of a distinct in vivo "rPFOR-PFL shunt" to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO2 fixation via the reductive C1 metabolic pathway in C. thermocellum These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO2 as well.
منابع مشابه
Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor.
An automated repetitive batch fermentation system was developed to facilitate the study of microbial cellulose utilization. The system was operated with Avicel as the carbon source and either Clostridium thermocellum ATCC 27405 or a consortium enriched from compost as inocula. Multiple cycles of growth medium addition, incubation, and medium removal were performed with each inoculum. Removal an...
متن کاملUnravelling carbon metabolism in anaerobic cellulolytic bacteria.
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to con...
متن کاملImpact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis
BACKGROUND Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and othe...
متن کاملEfficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum
BACKGROUND Cost-efficient saccharification is one of the main bottlenecks for industrial lignocellulose conversion. Clostridium thermocellum naturally degrades lignocellulose efficiently using the cellulosome, a multiprotein supermolecular complex, and thus can be potentially used as a low-cost catalyst for lignocellulose saccharification. The industrial use of C. thermocellum is restrained due...
متن کاملDirect Saccharification Technology From Lignocellulosic Biomass
Technology is important because of the high cost of obtaining fermentable sugars efficiently from cellulosic biomass. Many microorganisms capable of producing cellulose and hemicellulose-degrading enzymes have been reported and characterized. Currently, fungal cellulases are prepared and utilized to saccharify cellulosic biomass. It is known that the fungus Trichoderma reesei is able to produce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 46 شماره
صفحات -
تاریخ انتشار 2016